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The aforementioned experimental results suggest that 
NuL, max might be related with stall length. Figure 2 shows 
the plotted result of Nu,, ,,,,JRei13 vs .xR/L. It may be con- 
cluded that the data are well correlated by the following 
expression. 

NU L, max = [0.446-0.238(~,/L)~.““] Kr: ‘. (4) 

In Fig. 2, the experimental data by Krall rt trl. and Filetti 
et ul. are compared with authors’ results. The slopes of 
Filetti’s results show a good agreement with authors’ in 
the limited range of xR/L. It is interesting to note that 
Nu~,,_~ is approximated by (4) without any distinction of 
short or long stall. In conclusion, NUT,, maX is solely dependent 
on a stall length, xR/L, and decreases with increasing stall 
length. The accuracy of NUL, m.,X estimated by the empirical 
relation (4) is within k 10”); for 4 x IO3 < RP[. i 8 x 10“ 
and 0.2 < .YJL i 16.0. 
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NOMENCLATURE 

r, unknown function ; 
D, diffusion constant; 

i, imaginary unit; 

0, angular frequency; 

G, Green’s function; 

Z,, 
distance in the two dimensional plane; 

_ 1 keio 
Kelvin functions of order zero; 

Ii,? > unity vector normal to the boundary; 

6’. unknown boundary function. 

I. INTRODUCTION 

WHEREAS the integral equation technique has been widely 
used for potential and electromagnetic scattering problems 
[I-S], this technique is not commonly known for other 
applications. The basic idea for using an integral equation 
consists in the numerical solution of the problem. A two 
dimensional partialdifferentialequation will be replaced by a 
one dimensional integral equation. This fact saves memory 
storage and computation time. The programming of the 
problem is then also simplified. 

The transient analysis of a thermal diffusion problem by 
an integral equation has been performed by Shaw [9]. 
Similar methods have been applied for a drift-diffusion 
problem [IO, 111. In this paper, an integral equation will be 
derived for the equation: 

DV’T = iwT (1) 

which describes the diffusion phenomenon in a two 
dimensional area S under AC conditions (i;.!it --t iu). 

2. INTEGRAL EQUATlOk 

In order to establish an integral equation for the equation 
(l), one has to know the Green’s function G of the problem. 
This function is a solution of: 

VZG - ‘; G = S(F) (2) 

in the infinite two dimensional plane. One can then use 
polar coordinates (r, 0) and by taking the circular symmetry 
into account, the e-dependence may be dropped. The 
Green’s function G depends only upon the distance r and is 
found to be: 

G(r) = & {kerO [r J(cu/D)] +i keio [r ,/(w/D)]} (3) 

where kero and keio are the Kelvin fun&ions of zeroth 
order [12]. 

The integral equation technique will now be outlined 
for the particular geometry presented on Fig. 1. The same 
method can be applied for arbitrary geometries. The 
boundary conditions are (Fig. 1): 

T= To on AA’ 

T=O on BB 

VT, 6. = 0 on AB and A’B’. (4) 

By using the y-independence of this problem the equation 
(1) can also be solved analytically, so that the numerical 
results can be compared with the exact analytical solution. 
In order to construct the integral equation, the solution 
T is written as: 

T(r) = 
i 

p(?‘)G( IF-- r’/)dC (5) 
c 

where p(r) is an unknown complex source function defined 
along the boundary C. Imposing the boundary conditions 
(4) on the proposed solution (5) yields : 

Q p(f’)G(I?-?J)dC’= & FEAA’ (6) 
c 

P 
p(r”)G(lf-?‘j)dC’= 0 FEBB (7) 

c 

ti.dC’=O reABandA’B (8) 
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where : 

+ikeib[li-P1J(o/D)]}~. (9) 

The relations (6-8) constitute an integral equation for the 
unknown function p(i). The first term appearing in (8) is 
caused by the discontinuity of the Green’s function for 
? + ?‘. The same problem occurs for potential equations [ 131. 
Once the integral equation has been solved, the function T 
can be easily calculated by applying the formula (5). It is 
also possible to calculate the gradient of T by: 

p(?)V,G((+-r’I)dC’. (10) 

By integrating (10) along a given line, the flux of VT is 
easily found. For a point ? lying on the boundary C, the 
relation (10) should be corrected for the normal component 
VT. ii. as has been done for the equation (8). 

3. NUMERlCAL SOLUTION 

In order to start the numerical solution of the integral 
equation, the boundary C is divided into n intervals ACi. 
In each interval ACi the function p(r) is replaced by a complex 
number pi. The integral equation can then be reduced to a 
linear algebraic set of n unknowns [3], which can be written 
quite generally as : 

jil aij Pj = bi. 

Denoting i$ as the centre point of the interval A& the 
coefficients aij and bi for ?, E AA’ may be written as: 

aij = G(l+rjl)lACil (12) 
bi = TO (13) 

where IACil denotes the length of the ith interval. Similar 
expressions as (12) and (13) can be written if i$ is located 
elsewhere on the boundary. For the diagonal elements aii, the 
expression (12) cannot be used because the Green’s function 
(3) tends to infinity if the argument becomes zero. The 
relation (12) should then be replaced by : 

aii = 

s 

G(Jii-?‘I) dC’= 2 
AC, s 

Will2 

G(x)dx. (14) 
0 

By integrating the numerical approximations of the Kelvin 
functions [14], the integrals (14) are easily evaluated. The 
algebraic set (11) can now be easily solved by the Gauss 
elimination method [15]. 

For the particular geometry shown in Fig. 1, the problem 
can also be solved analytically. By looking for a 
y-independent solution, the boundary condition VT. ii, = 0 
is automatically fulfilled. One obtains then: 

T = A e&u>/D)x + Be- J(j0$Dts (15) 

where: 

A = l-exp[2J(jw/D)a]’ 

B = -Aexp[2&jo/D)a]. (16) 

In order to check the accuracy of the numerical method, 
the flux of T through AA’ was calculated numerically. These 
results are compared with the analytical expression: 

Figure 2 represents the real and imaginary part of (17) for 
b = a = 10 and D = 1. Some numerical results obtained for 
n = 20 and n = 40 are also shown. One sees that the accuracy 
is fairly good even for a relatively low value of n. 
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FIG. 1. Rectangular geometry used to establish 
the integral equation for the diffusion equation 

under AC conditions. 
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FIG. 2. Real and imaginary part of the flux of 
VT through AA’ for a square geometry (a = b). 
The full lines are the analytical results whereas 
the dots are numerical results. 0 : n = 20 (5 in- 
tervals on each side); q : n = 40 (10 intervals on 

each side). 

4. CONCLUSION 

In this paper an integral equation method has been 
presented to solve the AC diffusion problem numerically. 
The two-dimensional diffusion equation is then reduced to a 
one-dimensional complex integral equation which largely 
simplifies the numerical solution. The method has been 
checked for a particular geometry by comparing with the 
exact analytical results. It was found that a good accuracy 
could be obtained even for moderate values of the number 
n of intervals and for high values of the frequency o. 

REFERENCES 

1. J. Van Bladel, Electromagnetic Fields, pp. 131-133. 
McGraw-Hill, New York (1964). 

2. T. W. Edwards and J. Van Bladel, Electrostatic dipole 
moment of a dielectric cube, Appl. Scient. Res. 9,151-155 
(1961). 

3. G. De Mey, Integral equation for the potential distribu- 
tion in a Hall generator, Electronics Lett. 9, 264-266 
(1973). 

4. G. De Mey, A method for calculating eddy currents in 
plates of arbitrary geometry, Arch. Elektrotech. 56, 
137-140 (1974). 



704 Shorter Communications 

5. G. De Mey, Determination of the electric field in a Hall 10. H. J. Pauwels and G. De Mey, Surface to surface 
generator under influence of an alternating magnetic transition probabilities in thin film capacitors. Physicu 
field, Solid-State Electron. 17,97?-979 (1974). Status Solidi a 24, K39-K44 (1974). 

6. S. De Wolf and G. De Mey, Numerical methods for 11. G. De Mey, An integral equation method for the 
solving integral equations of potential problems, I$ numerical calculation of ion drift and diffusion in 
Proc. Lett. 3, 121-124 (1975). 

7. K. Mei and J. Van Blade], Low frequency scattering by 
rectangular cylinders, iEEE Transactions on Antennas 
and Propagation, Vol. AP-11, pp. 52-56 (1963). 

8. K. Mei and J. Van Bladel, Scattering by perfectly 
conducting rectangular cylinders, IEEE 7’runsacrion.s on 
Antennas atzd Pro~atjon, Vol. AP-I 1, pp. 185-192 
(1963). 

9. R. Shaw, An integral equation approach to diffusion, 
int. J. Heat Mass Transfer 17.693-699 (1974). 

evaporated dielectrics, Computing (to be published). 
12. A. Angot, Complements de Mathhmatiques, pp. 390-394. 

Masson, Paris (1972). 
13. J. Van Bladel, Electromagnetic Fields, pp. 57-58. 

McGraw-Hill, New York (1964). 
__ 

14. M. Abramowitz and I. Steeun. Handbook of Mathe- 
matica~ Functions, pp. 384-383. Dover, New York (1965). 

15. T. R. McCalla, introduction to numerical methods and 
Fortru~ Programmj~g. p. 171. John Wiley, New York 
(196-l). 


